Ants Find the Shortest Path when the Nest and Food Nodes are Connected

2 The Edge Reinforcements are Polyá Urns

Image: A matrix

æ

2 The Edge Reinforcements are Polyá Urns

3 Calculating Reinforcement Probabilities

2 The Edge Reinforcements are Polyá Urns

3 Calculating Reinforcement Probabilities

Proof of Result

∃ ► < ∃ ►</p>

Image: A image: A

æ

Motivation

æ April 20, 2023

イロト イヨト イヨト イヨト

Ants deposit pheromones to help future ants navigate towards food

Ants deposit pheromones to help future ants navigate towards food
This can be modelled by a linear reinforcement model

The Model

イロト イヨト イヨト イヨト

• Suppose we have a (simple) finite graph $\mathcal{G} = (V, E)$

Image: A matched by the second sec

æ

• Suppose we have a (simple) finite graph $\mathcal{G} = (V, E)$ with initial edge weights $w^{(0)}$ all equal to 1

- Suppose we have a (simple) finite graph G = (V, E) with initial edge weights w⁽⁰⁾ all equal to 1
 - V contains two vertices labelled N and F connected by a single edge e

- Suppose we have a (simple) finite graph $\mathcal{G} = (V, E)$ with initial edge weights $w^{(0)}$ all equal to 1
 - V contains two vertices labelled N and F connected by a single edge e
- Given weight vector w⁽ⁿ⁾, an Ant performs an Edge-Weighted Random Walk from N to F

- Suppose we have a (simple) finite graph $\mathcal{G} = (V, E)$ with initial edge weights $w^{(0)}$ all equal to 1
 - V contains two vertices labelled N and F connected by a single edge e
- Given weight vector w⁽ⁿ⁾, an Ant performs an Edge-Weighted Random Walk from N to F
 - As we do, we keep track of our history, *forgetting about loops as soon as they occur*

- Suppose we have a (simple) finite graph $\mathcal{G} = (V, E)$ with initial edge weights $w^{(0)}$ all equal to 1
 - V contains two vertices labelled N and F connected by a single edge e
- Given weight vector $w^{(n)}$, an Ant performs an *Edge-Weighted Random Walk* from N to F
 - As we do, we keep track of our history, *forgetting about loops as soon as they occur*
- Once we reach F, we reinforce the weights of the edges on the N F path by 1

- Suppose we have a (simple) finite graph $\mathcal{G} = (V, E)$ with initial edge weights $w^{(0)}$ all equal to 1
 - V contains two vertices labelled N and F connected by a single edge e
- Given weight vector w⁽ⁿ⁾, an Ant performs an Edge-Weighted Random Walk from N to F
 - As we do, we keep track of our history, *forgetting about loops as soon as they occur*
- Once we reach F, we reinforce the weights of the edges on the N F path by 1
- We are interested in $\hat{w}^{(n)} := \frac{w^{(n)}}{n+1}$ as $n \to \infty$

▲ □ ▶ ▲ 클 ▶ ▲ 클 ▶ ▲ 클 ▶ ▲ 클 ♥ Q @
 April 20, 2023 6 / 19

• $\hat{w} \in [0,1]^E$

• • • • • • • •

3

- $\hat{w} \in [0,1]^E$
- Dynamics unaffected by transformation $w\mapsto cw$ for some $c\in\mathbb{R}$

- $\hat{w} \in [0,1]^E$
- Dynamics unaffected by transformation $w\mapsto cw$ for some $c\in\mathbb{R}$
 - In particular, can use \hat{w} instead of w

- $\hat{w} \in [0,1]^E$
- Dynamics unaffected by transformation $w\mapsto cw$ for some $c\in\mathbb{R}$
 - In particular, can use \hat{w} instead of w
- The path any ant takes back from F to N is simple (no loops)

- $\hat{w} \in [0,1]^E$
- Dynamics unaffected by transformation $w \mapsto cw$ for some $c \in \mathbb{R}$
 - In particular, can use \hat{w} instead of w
- The path any ant takes back from F to N is simple (no loops)
- Only 1 edge connected to N is reinforced by each ant

- $\hat{w} \in [0,1]^E$
- Dynamics unaffected by transformation $w \mapsto cw$ for some $c \in \mathbb{R}$
 - In particular, can use \hat{w} instead of w
- The path any ant takes back from F to N is simple (no loops)
- Only 1 edge connected to N is reinforced by each ant (same goes for F)

- $\hat{w} \in [0,1]^E$
- Dynamics unaffected by transformation $w\mapsto cw$ for some $c\in\mathbb{R}$
 - In particular, can use \hat{w} instead of w
- The path any ant takes back from F to N is simple (no loops)
- Only 1 edge connected to N is reinforced by each ant (same goes for F)

Lemma 1

$$\pi_N(\hat{w}) := \sum_{x \in V: x \sim N} \hat{w}_{Nx}^{(n)} \to 1$$

- $\hat{w} \in [0,1]^E$
- Dynamics unaffected by transformation $w\mapsto cw$ for some $c\in\mathbb{R}$
 - In particular, can use \hat{w} instead of w
- The path any ant takes back from F to N is simple (no loops)
- Only 1 edge connected to N is reinforced by each ant (same goes for F)

Lemma 1

$$\pi_N(\hat{w}) := \sum_{x \in V: x \sim N} \hat{w}_{Nx}^{(n)} \to 1$$

Proof.

$$\pi_N(\hat{w}^{(n)}) = \frac{\sum_{x \in V: x \sim N} w_{Nx}^{(n)}}{n+1}$$

Theorem 2

 $\hat{w}_{e}^{(n)}
ightarrow 1$ and all the other weights tend to 0

April 20, 2023 7 / 19

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

æ

The Edge Reinforcements are Polyá Urns

æ

< ∃⇒

Image: A matrix and a matrix

April 20, 2023 9 / 19

3

イロト イヨト イヨト イヨト

Standard Urn Model:

< 1 k

æ

Standard Urn Model:

Let $w^{(n)} = \#$ white balls at time *n*.

Standard Urn Model:

Let $w^{(n)} = \#$ white balls at time n. $(w^{(n)})_{n\geq 0}$ is an Urn process when $\mathbb{P}\left(w^{(n+1)} = w^{(n)} + 1 \middle| w^{(0)}, ..., w^{(n)}\right) = \frac{\# \text{ white balls at time } n}{n+1} = \hat{w}^{(n)}$

Standard Urn Model:

Let $w^{(n)} = \#$ white balls at time *n*. $(w^{(n)})_{n \ge 0}$ is a *p*-Urn process when $\mathbb{P}\left(w^{(n+1)} = w^{(n)} + 1 \middle| w^{(0)}, ..., w^{(n)}\right) = p(\hat{w}^{(n)}), p: (0,1) \mapsto (0,1)$

▲ □ ▷ ▲ 클 ▷ ▲ 클 ▷ ▲ 클 ▷ ♀ ♀
 April 20, 2023 10 / 19

We have the following result on *p*-urn processes:

э

We have the following result on *p*-urn processes:

Lemma 3 If $p(\hat{w}) > \hat{w}$ for every $\hat{w} \in (0, c)$ for some $c \in (0, 1)$, then $\liminf_{n \to \infty} \hat{w}^{(n)} \ge c$
Calculating Reinforcement Probabilities

æ

April 20, 2023

▲ □ ▷ ▲ ⓓ ▷ ▲ ≧ ▷ ▲ ≧ ▷ ④ Q (~
 April 20, 2023 12 / 19

We want to calculate $p(\hat{w}) := \mathbb{P}(w_e^{(n+1)} = w_e^{(n)} + 1 | \hat{w}^{(n)} = \hat{w})$

> • 3 • April 20, 2023 12/19

Image: A matrix and a matrix

æ

• Let S be the set of neighbours of N excluding F

Let *S* be the set of neighbours of *N* excluding *F*For *x* ∈ *S*, define:

- Let *S* be the set of neighbours of *N* excluding *F*For *x* ∈ *S*, define:
- For $x \in S$, define.
 - $p_x(\hat{w})$ as $p(\hat{w})$ conditioned on first going to x

- Let S be the set of neighbours of N excluding F
- For $x \in S$, define:
 - $p_x(\hat{w})$ as $p(\hat{w})$ conditioned on first going to x
 - τ_A^x as the time it takes to hit set A starting from x

- Let *S* be the set of neighbours of *N* excluding *F*For *x* ∈ *S*, define:
 - $p_x(\hat{w})$ as $p(\hat{w})$ conditioned on first going to x
 - τ_A^x as the time it takes to hit set A starting from x

Lemma 4

$$p_x(\hat{w}) = \mathbb{P}(\tau_N^x < \tau_F^x | \hat{w}) p(\hat{w})$$

Lemma 4: $p_x(\hat{w}) = \mathbb{P}(\tau_N^x < \tau_F^x | \hat{w}) p(\hat{w})$

イロト イ部ト イヨト イヨト 二日

Lemma 4: $p_x(\hat{w}) = \mathbb{P}(\tau_N^x < \tau_F^x | \hat{w}) p(\hat{w})$ Conditioning on first step of random walk:

э

∃ ⇒

Image: A matrix and a matrix

Lemma 4: $p_x(\hat{w}) = \mathbb{P}(\tau_N^x < \tau_F^x | \hat{w}) p(\hat{w})$ Conditioning on first step of random walk:

$$p(\hat{w}) = \frac{\hat{w}_e}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}} + \sum_{x \in S} \frac{\hat{w}_{Nx}}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}} p_x(\hat{w})$$

April 20, 2023 13 / 19

э

∃ ⇒

Image: A matrix and a matrix

Lemma 4: $p_x(\hat{w}) = \mathbb{P}(\tau_N^x < \tau_F^x | \hat{w}) p(\hat{w})$ Conditioning on first step of random walk:

$$\begin{split} p(\hat{w}) &= \frac{\hat{w}_e}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}} + \sum_{x \in S} \frac{\hat{w}_{Nx}}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}} p_x(\hat{w}) \\ &= \frac{\hat{w}_e}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}} + \sum_{x \in S} \frac{\hat{w}_{Nx}}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}} \mathbb{P}(\tau_N^x < \tau_F^x | \hat{w}) p(\hat{w}) \end{split}$$

э

ł

Lemma 4: $p_x(\hat{w}) = \mathbb{P}(\tau_N^x < \tau_F^x | \hat{w}) p(\hat{w})$ Conditioning on first step of random walk:

$$\begin{aligned} p(\hat{w}) &= \frac{\hat{w}_e}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}} + \sum_{x \in S} \frac{\hat{w}_{Nx}}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}} p_x(\hat{w}) \\ &= \frac{\hat{w}_e}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}} + \sum_{x \in S} \frac{\hat{w}_{Nx}}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}} \mathbb{P}(\tau_N^x < \tau_F^x | \hat{w}) p(\hat{w}) \\ &\Rightarrow \left(\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}\right) p(\hat{w}) = \hat{w}_e + p(\hat{w}) \sum_{x \in S} \hat{w}_{Nx} \mathbb{P}(\tau_N^x < \tau_F^x | \hat{w}) \end{aligned}$$

э

글 에 에 글 에 다

Image: A matrix and a matrix

A key result

Lemma 4: $p_x(\hat{w}) = \mathbb{P}(\tau_N^x < \tau_F^x | \hat{w}) p(\hat{w})$ Conditioning on first step of random walk:

$$\begin{split} p(\hat{w}) &= \frac{\hat{w}_e}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}} + \sum_{x \in S} \frac{\hat{w}_{Nx}}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}} p_x(\hat{w}) \\ &= \frac{\hat{w}_e}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}} + \sum_{x \in S} \frac{\hat{w}_{Nx}}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}} \mathbb{P}(\tau_N^x < \tau_F^x | \hat{w}) p(\hat{w}) \\ &\Rightarrow \left(\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}\right) p(\hat{w}) = \hat{w}_e + p(\hat{w}) \sum_{x \in S} \hat{w}_{Nx} \mathbb{P}(\tau_N^x < \tau_F^x | \hat{w}) \\ &\Rightarrow p(\hat{w}) = \frac{\hat{w}_e}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx} \mathbb{P}(\tau_F^x < \tau_N^x | \hat{w})} \end{split}$$

э

A key result

Lemma 4: $p_x(\hat{w}) = \mathbb{P}(\tau_N^x < \tau_F^x | \hat{w}) p(\hat{w})$ Conditioning on first step of random walk:

$$\begin{split} p(\hat{w}) &= \frac{\hat{w}_e}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}} + \sum_{x \in S} \frac{\hat{w}_{Nx}}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}} p_x(\hat{w}) \\ &= \frac{\hat{w}_e}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}} + \sum_{x \in S} \frac{\hat{w}_{Nx}}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}} \mathbb{P}(\tau_N^x < \tau_F^x | \hat{w}) p(\hat{w}) \\ &\Rightarrow \left(\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}\right) p(\hat{w}) = \hat{w}_e + p(\hat{w}) \sum_{x \in S} \hat{w}_{Nx} \mathbb{P}(\tau_N^x < \tau_F^x | \hat{w}) \\ &\Rightarrow p(\hat{w}) = \frac{\hat{w}_e}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx} \mathbb{P}(\tau_F^x < \tau_N^x | \hat{w})} = p(\hat{w}_e | \hat{w}_{-e}) \end{split}$$

э

Proof of Result

æ

メロト メポト メヨト メヨト

April 20, 2023

Recap

• We want to show $\hat{w}_e ightarrow 1$ and all other weights tend to 0

Image: A matrix and a matrix

ullet We want to show $\hat{w}_e
ightarrow 1$ and all other weights tend to 0

$$p(\hat{w}) = rac{\hat{w}_e}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx} \mathbb{P}(\tau_F^x < \tau_N^x | \hat{w})}$$

< ∃⇒

Image: A matrix and a matrix

• We want to show $\hat{w}_e
ightarrow 1$ and all other weights tend to 0

$$p(\hat{w}) = \frac{\hat{w}_e}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx} \mathbb{P}(\tau_F^x < \tau_N^x | \hat{w})} (= p(\hat{w}_e))$$
(1)

< ∃⇒

Image: A matrix and a matrix

ullet We want to show $\hat{w}_e
ightarrow 1$ and all other weights tend to 0

$$p(\hat{w}) = \frac{\hat{w}_e}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx} \mathbb{P}(\tau_F^x < \tau_N^x | \hat{w})} (= p(\hat{w}_e))$$
(1)

• If $p(\hat{w}_e) > \hat{w}_e$ for $\hat{w}_e \in (0, c)$ then $\liminf \hat{w}_e \ge c$

- < f⊒ > <

æ

• We want to show $\hat{w}_e
ightarrow 1$ and all other weights tend to 0

$$p(\hat{w}) = \frac{\hat{w}_e}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx} \mathbb{P}(\tau_F^x < \tau_N^x | \hat{w})} (= p(\hat{w}_e))$$
(1)

• If
$$p(\hat{w}_e) > \hat{w}_e$$
 for $\hat{w}_e \in (0, c)$ then $\liminf \hat{w}_e \ge c$
• $\Leftrightarrow \hat{w}_e + \sum_{x \in S} \hat{w}_{Nx} \mathbb{P}(\tau_F^x < \tau_N^x | \hat{w}) < 1$

< ∃⇒

Image: A matrix and a matrix

• We want to show $\hat{w}_e
ightarrow 1$ and all other weights tend to 0

$$p(\hat{w}) = \frac{\hat{w}_e}{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx} \mathbb{P}(\tau_F^x < \tau_N^x | \hat{w})} (= p(\hat{w}_e))$$
(1)

- If $p(\hat{w}_e) > \hat{w}_e$ for $\hat{w}_e \in (0, c)$ then $\liminf \hat{w}_e \ge c$ • $\Leftrightarrow \hat{w}_e + \sum_{x \in S} \hat{w}_{Nx} \mathbb{P}(\tau_F^x < \tau_N^x | \hat{w}) < 1$
- Recall Lemma 1: $\pi_N(\hat{w}) := \hat{w}_e + \sum_{x \in S} \hat{w}_{Nx} \to 1$

Proof

• Pick a $c \in (0,1)$ and assume $\hat{w}_e \in (0,c)$.

Image: A matrix and a matrix

æ

• Pick a $c \in (0,1)$ and assume $\hat{w}_e \in (0,c)$. Then $\exists x \in S : \hat{w}_{Nx} > 0$ (Lemma 1).

æ

< ∃⇒

Image: A matrix

• Pick a $c \in (0,1)$ and assume $\hat{w}_e \in (0,c)$. Then $\exists x \in S : \hat{w}_{Nx} > 0$ (Lemma 1). Call it y

- 3 ▶

Image: A matrix

э

- Pick a $c \in (0,1)$ and assume $\hat{w}_e \in (0,c)$. Then $\exists x \in S : \hat{w}_{Nx} > 0$ (Lemma 1). Call it y
- Since $\hat{w}_{Ny} > 0$,

$$\mathbb{P}(au_{F}^{y} < au_{N}^{y} | \hat{w}) \leq 1 - \hat{w}_{Ny} / |V|$$

- 3 ▶

Image: A matrix

э

- Pick a $c \in (0, 1)$ and assume $\hat{w}_e \in (0, c)$. Then $\exists x \in S : \hat{w}_{Nx} > 0$ (Lemma 1). Call it y
- Since $\hat{w}_{Ny} > 0$,

$$\mathbb{P}(au_{F}^{y} < au_{N}^{y} | \hat{w}) \leq 1 - \hat{w}_{Ny} / |V|$$

$$\hat{w}_e + \sum_{x \in \mathcal{S}} \hat{w}_{\mathcal{N}x} \mathbb{P}(au_F^x < au_N^x | \hat{w}) \leq \hat{w}_e + \sum_{x \in \mathcal{S} \setminus \{y\}} \hat{w}_{\mathcal{N}x} + \hat{w}_{\mathcal{N}y} \left(1 - \hat{w}_{\mathcal{N}y}/|V|
ight)$$

Proof

- Pick a $c \in (0, 1)$ and assume $\hat{w}_e \in (0, c)$. Then $\exists x \in S : \hat{w}_{Nx} > 0$ (Lemma 1). Call it y
- Since $\hat{w}_{Ny} > 0$,

$$\mathbb{P}(au_{ extsf{F}}^{y} < au_{ extsf{N}}^{y} | \hat{w}) \leq 1 - \hat{w}_{ extsf{N}y} / |V|$$

Then

$$\begin{split} \hat{w}_e + \sum_{x \in S} \hat{w}_{Nx} \mathbb{P}(\tau_F^x < \tau_N^x | \hat{w}) &\leq \hat{w}_e + \sum_{x \in S \setminus \{y\}} \hat{w}_{Nx} + \hat{w}_{Ny} \left(1 - \hat{w}_{Ny} / |V|\right) \\ &= \hat{w}_e + \sum_{x \in S} \hat{w}_{Nx} - \hat{w}_{Ny}^2 / |V| \end{split}$$

< 47 ▶

Proof

- Pick a $c \in (0,1)$ and assume $\hat{w}_e \in (0,c)$. Then $\exists x \in S : \hat{w}_{Nx} > 0$ (Lemma 1). Call it y
- Since $\hat{w}_{Ny} > 0$,

$$\mathbb{P}(au_{ extsf{F}}^{ extsf{y}} < au_{ extsf{N}}^{ extsf{y}} | \hat{w}) \leq 1 - \hat{w}_{ extsf{Ny}} / | extsf{V} |$$

Then

$$\begin{split} \hat{w}_e + \sum_{x \in S} \hat{w}_{Nx} \mathbb{P}(\tau_F^x < \tau_N^x | \hat{w}) &\leq \hat{w}_e + \sum_{x \in S \setminus \{y\}} \hat{w}_{Nx} + \hat{w}_{Ny} \left(1 - \hat{w}_{Ny} / |V|\right) \\ &= \underbrace{\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx}}_{=\pi_N(\hat{w}) \to 1 \text{ (Lemma 1)}} - \hat{w}_{Ny}^2 / |V| \end{split}$$

- ∢ /⊐ >

э

- Pick a $c \in (0,1)$ and assume $\hat{w}_e \in (0,c)$. Then $\exists x \in S : \hat{w}_{Nx} > 0$ (Lemma 1). Call it y
- Since $\hat{w}_{Ny} > 0$,

$$\mathbb{P}(au_{F}^{y} < au_{N}^{y} | \hat{w}) \leq 1 - \hat{w}_{Ny} / |V|$$

$$\begin{split} \hat{w}_e + \sum_{x \in S} \hat{w}_{Nx} \mathbb{P}(\tau_F^x < \tau_N^x | \hat{w}) &\leq \hat{w}_e + \sum_{x \in S \setminus \{y\}} \hat{w}_{Nx} + \hat{w}_{Ny} \left(1 - \hat{w}_{Ny} / |V|\right) \\ &= 1 - \underbrace{\hat{w}_{Ny}^2 / |V|}_{>0} \end{split}$$

- ∢ 🗗 ▶

э

- Pick a $c \in (0, 1)$ and assume $\hat{w}_e \in (0, c)$. Then $\exists x \in S : \hat{w}_{Nx} > 0$ (Lemma 1). Call it y
- Since $\hat{w}_{Ny} > 0$,

$$\mathbb{P}(au_{F}^{y} < au_{N}^{y} | \hat{w}) \leq 1 - \hat{w}_{Ny} / |V|$$

$$\hat{w}_e + \sum_{x \in S} \hat{w}_{Nx} \mathbb{P}(\tau_F^x < \tau_N^x | \hat{w}) \le \hat{w}_e + \sum_{x \in S \setminus \{y\}} \hat{w}_{Nx} + \hat{w}_{Ny} (1 - \hat{w}_{Ny}/|V|)$$

$$= 1 - \underbrace{\hat{w}_{Ny}^2/|V|}_{>0} < 1$$

æ

▶ < ∃ >

Image: A matrix and a matrix

- Pick a $c \in (0, 1)$ and assume $\hat{w}_e \in (0, c)$. Then $\exists x \in S : \hat{w}_{Nx} > 0$ (Lemma 1). Call it y
- Since $\hat{w}_{Ny} > 0$,

$$\mathbb{P}(au_{F}^{y} < au_{N}^{y} | \hat{w}) \leq 1 - \hat{w}_{Ny} / |V|$$

$$\begin{split} \hat{w}_e + \sum_{x \in S} \hat{w}_{Nx} \mathbb{P}(\tau_F^x < \tau_N^x | \hat{w}) &\leq \hat{w}_e + \sum_{x \in S \setminus \{y\}} \hat{w}_{Nx} + \hat{w}_{Ny} \left(1 - \hat{w}_{Ny} / |V|\right) \\ &= 1 - \underbrace{\hat{w}_{Ny}^2 / |V|}_{>0} < 1 \end{split}$$

• So lim inf $\hat{w}_e \geq c$

Proof

- Pick a c ∈ (0, 1) and assume ŵ_e ∈ (0, c). Then ∃x ∈ S : ŵ_{Nx} > 0 (Lemma 1). Call it y
- Since $\hat{w}_{Ny} > 0$,

$$\mathbb{P}(au_{ extsf{F}}^{ extsf{y}} < au_{ extsf{N}}^{ extsf{y}} | \hat{w}) \leq 1 - \hat{w}_{ extsf{Ny}} / | extsf{V} |$$

Then

$$\begin{split} \hat{w}_e + \sum_{x \in \mathcal{S}} \hat{w}_{Nx} \mathbb{P}(\tau_F^x < \tau_N^x | \hat{w}) &\leq \hat{w}_e + \sum_{x \in \mathcal{S} \setminus \{y\}} \hat{w}_{Nx} + \hat{w}_{Ny} \left(1 - \hat{w}_{Ny} / |V|\right) \\ &= 1 - \underbrace{\hat{w}_{Ny}^2 / |V|}_{>0} < 1 \end{split}$$

• So lim inf $\hat{w}_e \geq c$

• But we assumed nothing about c!!!
Future Work

▲ □ ▷ ▲ ⓓ ▷ ▲ ≧ ▷ ▲ ≧ ▷ ▲ ≧ ♡ Q (~
 April 20, 2023 17 / 19

• Edge length?

• • • • • • • •

3

• Edge length? (actually not that bad)

Image: A matrix

æ

- Edge length? (actually not that bad)
- What about when N and F not connected?

- Edge length? (actually not that bad)
- What about when N and F not connected?
- Multiple food sources/ nests?

- Edge length? (actually not that bad)
- What about when N and F not connected?
- Multiple food sources/ nests?
- Other reinforcement rules

Thank You

- ∢ ⊒ →

Image: A image: A

æ

Image: A matrix and a matrix

3

$$\hat{w}_{e}^{(n+1)} - \hat{w}_{e}^{(n)} = rac{w_{e}^{(n)} + \mathbb{1}_{\mathcal{A}^{(n)}}}{n+2} - rac{w_{e}^{(n)}}{n+1}$$

Image: A matrix and a matrix

3

$$\hat{w}_{e}^{(n+1)} - \hat{w}_{e}^{(n)} = \frac{w_{e}^{(n)} + \mathbb{1}_{\mathcal{A}^{(n)}}}{n+2} - \frac{w_{e}^{(n)}}{n+1}$$
$$= w_{e}^{(n)} \left(\frac{1}{n+2} - \frac{1}{n+1}\right) + \frac{1}{n+2} \mathbb{1}_{\mathcal{A}^{(n)}}$$

April 20, 2023 19 / 19

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\hat{w}_{e}^{(n+1)} - \hat{w}_{e}^{(n)} = \frac{w_{e}^{(n)} + \mathbb{1}_{\mathcal{A}^{(n)}}}{n+2} - \frac{w_{e}^{(n)}}{n+1}$$
$$= w_{e}^{(n)} \left(\frac{1}{n+2} - \frac{1}{n+1}\right) + \frac{1}{n+2}\mathbb{1}_{\mathcal{A}^{(n)}}$$
$$= -\frac{1}{n+2}\hat{w}_{e}^{(n)} + \frac{1}{n+2}\left(\mathbb{1}_{\mathcal{A}^{(n)}} - p(\hat{w}_{e}^{(n)}) + p(\hat{w}_{e}^{(n)})\right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $\mathcal{A}^{(n)} := \{e \text{ reinforced} | \hat{w}^{(n)} \}.$

$$\hat{w}_{e}^{(n+1)} - \hat{w}_{e}^{(n)} = \frac{w_{e}^{(n)} + \mathbb{1}_{\mathcal{A}^{(n)}}}{n+2} - \frac{w_{e}^{(n)}}{n+1}$$

$$= w_{e}^{(n)} \left(\frac{1}{n+2} - \frac{1}{n+1}\right) + \frac{1}{n+2}\mathbb{1}_{\mathcal{A}^{(n)}}$$

$$= -\frac{1}{n+2}\hat{w}_{e}^{(n)} + \frac{1}{n+2}\left(\mathbb{1}_{\mathcal{A}^{(n)}} - p(\hat{w}_{e}^{(n)}) + p(\hat{w}_{e}^{(n)})\right)$$

$$= \frac{1}{n+2}\left(p(\hat{w}_{e}^{(n)}) - \hat{w}_{e}^{(n)} + \mathbb{1}_{\mathcal{A}^{(n)}} - p(\hat{w}_{e}^{(n)})\right)$$

April 20, 2023 19 / 19

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $\mathcal{A}^{(n)} := \{e \text{ reinforced} | \hat{w}^{(n)} \}.$

$$\hat{w}_{e}^{(n+1)} - \hat{w}_{e}^{(n)} = \frac{w_{e}^{(n)} + \mathbb{1}_{\mathcal{A}^{(n)}}}{n+2} - \frac{w_{e}^{(n)}}{n+1}$$

$$= w_{e}^{(n)} \left(\frac{1}{n+2} - \frac{1}{n+1}\right) + \frac{1}{n+2}\mathbb{1}_{\mathcal{A}^{(n)}}$$

$$= -\frac{1}{n+2}\hat{w}_{e}^{(n)} + \frac{1}{n+2}\left(\mathbb{1}_{\mathcal{A}^{(n)}} - p(\hat{w}_{e}^{(n)}) + p(\hat{w}_{e}^{(n)})\right)$$

$$= \frac{1}{n+2}\left(\underbrace{p(\hat{w}_{e}^{(n)}) - \hat{w}_{e}^{(n)}}_{F(\hat{w}_{e}^{(n)})} + \underbrace{\mathbb{1}_{\mathcal{A}^{(n)}} - p(\hat{w}_{e}^{(n)})}_{\text{mean zero}}\right)$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

Let $\mathcal{A}^{(n)} := \{e \text{ reinforced} | \hat{w}^{(n)} \}.$

$$\hat{w}_{e}^{(n+1)} - \hat{w}_{e}^{(n)} = \frac{w_{e}^{(n)} + \mathbb{1}_{\mathcal{A}^{(n)}}}{n+2} - \frac{w_{e}^{(n)}}{n+1}$$

$$= w_{e}^{(n)} \left(\frac{1}{n+2} - \frac{1}{n+1}\right) + \frac{1}{n+2} \mathbb{1}_{\mathcal{A}^{(n)}}$$

$$= -\frac{1}{n+2} \hat{w}_{e}^{(n)} + \frac{1}{n+2} \left(\mathbb{1}_{\mathcal{A}^{(n)}} - p(\hat{w}_{e}^{(n)}) + p(\hat{w}_{e}^{(n)})\right)$$

$$= \frac{1}{n+2} \left(\underbrace{p(\hat{w}_{e}^{(n)}) - \hat{w}_{e}^{(n)}}_{F(\hat{w}_{e}^{(n)})} + \underbrace{\mathbb{1}_{\mathcal{A}^{(n)}} - p(\hat{w}_{e}^{(n)})}_{\text{mean zero}}\right)$$

This makes $\left(\hat{w}_{e}^{(n)}
ight)_{n\geq0}$ a Stochastic Approximation Process:

Let $\mathcal{A}^{(n)} := \{e \text{ reinforced} | \hat{w}^{(n)} \}.$

$$\hat{w}_{e}^{(n+1)} - \hat{w}_{e}^{(n)} = \frac{w_{e}^{(n)} + \mathbb{1}_{\mathcal{A}^{(n)}}}{n+2} - \frac{w_{e}^{(n)}}{n+1}$$

$$= w_{e}^{(n)} \left(\frac{1}{n+2} - \frac{1}{n+1}\right) + \frac{1}{n+2}\mathbb{1}_{\mathcal{A}^{(n)}}$$

$$= -\frac{1}{n+2}\hat{w}_{e}^{(n)} + \frac{1}{n+2}\left(\mathbb{1}_{\mathcal{A}^{(n)}} - p(\hat{w}_{e}^{(n)}) + p(\hat{w}_{e}^{(n)})\right)$$

$$= \frac{1}{n+2}\left(\underbrace{p(\hat{w}_{e}^{(n)}) - \hat{w}_{e}^{(n)}}_{F(\hat{w}_{e}^{(n)})} + \underbrace{\mathbb{1}_{\mathcal{A}^{(n)}} - p(\hat{w}_{e}^{(n)})}_{\text{mean zero}}\right)$$

This makes $(\hat{w}_e^{(n)})_{n\geq 0}$ a Stochastic Approximation Process: behaves like the dynamical system $\dot{w} = F(w)$