
Ants Find the Shortest Path when
the Nest and Food Nodes are

Connected

April 20, 2023 1 / 19



Contents

1 The Ants Model

2 The Edge Reinforcements are Polyá Urns
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Motivation

Ants deposit pheromones to help
future ants navigate towards food

This can be modelled by a linear
reinforcement model
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The Model

Suppose we have a (simple) finite graph G = (V ,E ) with initial edge
weights w (0) all equal to 1

V contains two vertices labelled N and F connected by a single edge e

Given weight vector w (n), an Ant performs an Edge-Weighted
Random Walk from N to F

As we do, we keep track of our history, forgetting about loops as soon
as they occur

Once we reach F , we reinforce the weights of the edges on the N − F
path by 1

We are interested in ŵ (n) := w (n)

n+1 as n → ∞
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n+1 as n → ∞

April 20, 2023 5 / 19



The Model

Suppose we have a (simple) finite graph G = (V ,E ) with initial edge
weights w (0) all equal to 1

V contains two vertices labelled N and F connected by a single edge e

Given weight vector w (n), an Ant performs an Edge-Weighted
Random Walk from N to F

As we do, we keep track of our history, forgetting about loops as soon
as they occur

Once we reach F , we reinforce the weights of the edges on the N − F
path by 1

We are interested in ŵ (n) := w (n)
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n+1 as n → ∞

April 20, 2023 5 / 19



The Model

Suppose we have a (simple) finite graph G = (V ,E ) with initial edge
weights w (0) all equal to 1

V contains two vertices labelled N and F connected by a single edge e

Given weight vector w (n), an Ant performs an Edge-Weighted
Random Walk from N to F

As we do, we keep track of our history, forgetting about loops as soon
as they occur

Once we reach F , we reinforce the weights of the edges on the N − F
path by 1

We are interested in ŵ (n) := w (n)
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Some observations

ŵ ∈ [0, 1]E

Dynamics unaffected by transformation w 7→ cw for some c ∈ R
In particular, can use ŵ instead of w

The path any ant takes back from F to N is simple (no loops)

Only 1 edge connected to N is reinforced by each ant (same goes for
F )

Lemma 1

πN(ŵ) :=
∑

x∈V :x∼N ŵ
(n)
Nx → 1

Proof.

πN(ŵ
(n)) =

∑
x∈V :x∼N w

(n)
Nx

n+1
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Theorem

Theorem 2

ŵ
(n)
e → 1 and all the other weights tend to 0
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The Edge Reinforcements are Polyá Urns
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What is a Polya Urn?

Standard Urn Model:

Let w (n) = # white balls at time n. (w (n))n≥0 is when

P
(
w (n+1) = w (n) + 1

∣∣∣w (0), ...,w (n)
)
=
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What is a Polya Urn?

Standard Urn Model:

Let w (n) = # white balls at time n. (w (n))n≥0 is a p-Urn process when

P
(
w (n+1) = w (n) + 1

∣∣∣w (0), ...,w (n)
)
= p(ŵ (n)), p : (0, 1) 7→ (0, 1)
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Why do we Care?

We have the following result on p-urn processes:

Lemma 3

If p(ŵ) > ŵ for every ŵ ∈ (0, c) for some c ∈ (0, 1), then
lim infn→∞ ŵ (n) ≥ c
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If p(ŵ) > ŵ for every ŵ ∈ (0, c) for some c ∈ (0, 1), then
lim infn→∞ ŵ (n) ≥ c
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Calculating Reinforcement Probabilities
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Some Notation

We want to calculate
p(ŵ) := P(w (n+1)

e = w
(n)
e + 1|ŵ (n) = ŵ) (probability we

reinforce e given weights ŵ)

Let S be the set of neighbours of N excluding F
For x ∈ S , define:

px(ŵ) as p(ŵ) conditioned on first going to x
τ xA as the time it takes to hit set A starting from x

Lemma 4

px(ŵ) = P(τ xN < τ xF |ŵ)p(ŵ)
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p(ŵ) := P(w (n+1)

e = w
(n)
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px(ŵ) = P(τ xN < τ xF |ŵ)p(ŵ)
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e + 1|ŵ (n) = ŵ) (probability we

reinforce e given weights ŵ)
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A key result

Lemma 4: px(ŵ) = P(τ xN < τ xF |ŵ)p(ŵ)

Conditioning on first step of random walk:

p(ŵ) =
ŵe

ŵe +
∑

x∈S ŵNx
+
∑
x∈S

ŵNx

ŵe +
∑

x∈S ŵNx
px(ŵ)
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ŵe +
∑

x∈S ŵNx
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+
∑
x∈S

ŵNx
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⇒

(
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ŵNxP(τ xN < τ xF |ŵ)
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+
∑
x∈S
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ŵNx
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ŵNx

)
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Proof of Result
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Recap

We want to show ŵe → 1 and all other weights tend to 0

p(ŵ) =
ŵe

ŵe +
∑

x∈S ŵNxP(τ xF < τ xN |ŵ)
(= p(ŵe)) (1)

If p(ŵe) > ŵe for ŵe ∈ (0, c) then lim inf ŵe ≥ c

⇔ ŵe +
∑

x∈S ŵNxP(τ xF < τ xN |ŵ) < 1

Recall Lemma 1: πN(ŵ) := ŵe +
∑

x∈S ŵNx → 1
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⇔ ŵe +
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We want to show ŵe → 1 and all other weights tend to 0

p(ŵ) =
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(= p(ŵe)) (1)

If p(ŵe) > ŵe for ŵe ∈ (0, c) then lim inf ŵe ≥ c

⇔ ŵe +
∑

x∈S ŵNxP(τ xF < τ xN |ŵ) < 1

Recall Lemma 1: πN(ŵ) := ŵe +
∑

x∈S ŵNx → 1
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Proof

Pick a c ∈ (0, 1) and assume ŵe ∈ (0, c). Then ∃x ∈ S : ŵNx > 0
(Lemma 1). Call it y

Since ŵNy > 0,

P(τ yF < τ yN |ŵ) ≤ 1− ŵNy/|V |

Then

ŵe +
∑
x∈S

ŵNxP(τ xF < τ xN |ŵ) ≤ ŵe +
∑

x∈S\{y}

ŵNx + ŵNy (1− ŵNy/|V |)
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(Lemma 1).

Call it y

Since ŵNy > 0,
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ŵNxP(τ xF < τ xN |ŵ) ≤ ŵe +
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(Lemma 1). Call it y

Since ŵNy > 0,
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Then
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(Lemma 1). Call it y

Since ŵNy > 0,
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=πN(ŵ)→1 (Lemma 1)

−ŵ2
Ny/|V |
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(Lemma 1). Call it y

Since ŵNy > 0,
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∑

x∈S\{y}
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ŵe +
∑
x∈S
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Proof

Pick a c ∈ (0, 1) and assume ŵe ∈ (0, c). Then ∃x ∈ S : ŵNx > 0
(Lemma 1). Call it y

Since ŵNy > 0,

P(τ yF < τ yN |ŵ) ≤ 1− ŵNy/|V |

Then

ŵe +
∑
x∈S

ŵNxP(τ xF < τ xN |ŵ) ≤ ŵe +
∑

x∈S\{y}

ŵNx + ŵNy (1− ŵNy/|V |)

= 1− ŵ2
Ny/|V |︸ ︷︷ ︸
>0

< 1

So lim inf ŵe ≥ c

But we assumed nothing about c!!!

April 20, 2023 16 / 19



Future Work

Edge length? (actually not that bad)

What about when N and F not connected?

Multiple food sources/ nests?

Other reinforcement rules
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Future Work

Edge length? (actually not that bad)

What about when N and F not connected?

Multiple food sources/ nests?

Other reinforcement rules
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Thank You
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Lemma 3 Sketch Proof

Let A(n) :=
{
e reinforced|ŵ (n)

}
.

ŵ
(n+1)
e − ŵ

(n)
e =

w
(n)
e + 1A(n)

n + 2
− w

(n)
e

n + 1
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ŵ
(n+1)
e − ŵ
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}
.

ŵ
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(n)
e )︸ ︷︷ ︸

mean zero


This makes

(
ŵ

(n)
e

)
n≥0

a Stochastic Approximation Process:

April 20, 2023 19 / 19



Lemma 3 Sketch Proof

Let A(n) :=
{
e reinforced|ŵ (n)

}
.

ŵ
(n+1)
e − ŵ
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