Ants Find the Shortest Path when the Nest and Food Nodes are Connected

Contents

(1) The Ants Model

Contents

(1) The Ants Model
(2) The Edge Reinforcements are Polyá Urns

Contents

(1) The Ants Model
(2) The Edge Reinforcements are Polyá Urns
(3) Calculating Reinforcement Probabilities

Contents

(1) The Ants Model
(2) The Edge Reinforcements are Polyá Urns
(3) Calculating Reinforcement Probabilities
(4) Proof of Result

The Ants Model

Motivation

Motivation

- Ants deposit pheromones to help future ants navigate towards food

Motivation

- Ants deposit pheromones to help future ants navigate towards food
- This can be modelled by a linear reinforcement model

The Model

The Model

- Suppose we have a (simple) finite graph $\mathcal{G}=(V, E)$

The Model

- Suppose we have a (simple) finite graph $\mathcal{G}=(V, E)$ with initial edge weights $w^{(0)}$ all equal to 1

The Model

- Suppose we have a (simple) finite graph $\mathcal{G}=(V, E)$ with initial edge weights $w^{(0)}$ all equal to 1
- V contains two vertices labelled N and F connected by a single edge e

The Model

- Suppose we have a (simple) finite graph $\mathcal{G}=(V, E)$ with initial edge weights $w^{(0)}$ all equal to 1
- V contains two vertices labelled N and F connected by a single edge e
- Given weight vector $w^{(n)}$, an Ant performs an Edge-Weighted Random Walk from N to F

The Model

- Suppose we have a (simple) finite graph $\mathcal{G}=(V, E)$ with initial edge weights $w^{(0)}$ all equal to 1
- V contains two vertices labelled N and F connected by a single edge e
- Given weight vector $w^{(n)}$, an Ant performs an Edge-Weighted Random Walk from N to F
- As we do, we keep track of our history, forgetting about loops as soon as they occur

The Model

- Suppose we have a (simple) finite graph $\mathcal{G}=(V, E)$ with initial edge weights $w^{(0)}$ all equal to 1
- V contains two vertices labelled N and F connected by a single edge e
- Given weight vector $w^{(n)}$, an Ant performs an Edge-Weighted Random Walk from N to F
- As we do, we keep track of our history, forgetting about loops as soon as they occur
- Once we reach F, we reinforce the weights of the edges on the $N-F$ path by 1

The Model

- Suppose we have a (simple) finite graph $\mathcal{G}=(V, E)$ with initial edge weights $w^{(0)}$ all equal to 1
- V contains two vertices labelled N and F connected by a single edge e
- Given weight vector $w^{(n)}$, an Ant performs an Edge-Weighted Random Walk from N to F
- As we do, we keep track of our history, forgetting about loops as soon as they occur
- Once we reach F, we reinforce the weights of the edges on the $N-F$ path by 1
- We are interested in $\hat{w}^{(n)}:=\frac{w^{(n)}}{n+1}$ as $n \rightarrow \infty$

Some observations

Some observations

- $\hat{w} \in[0,1]^{E}$

Some observations

- $\hat{w} \in[0,1]^{E}$
- Dynamics unaffected by transformation $w \mapsto c w$ for some $c \in \mathbb{R}$

Some observations

- $\hat{w} \in[0,1]^{E}$
- Dynamics unaffected by transformation $w \mapsto c w$ for some $c \in \mathbb{R}$
- In particular, can use \hat{w} instead of w

Some observations

- $\hat{w} \in[0,1]^{E}$
- Dynamics unaffected by transformation $w \mapsto c w$ for some $c \in \mathbb{R}$
- In particular, can use \hat{w} instead of w
- The path any ant takes back from F to N is simple (no loops)

Some observations

- $\hat{w} \in[0,1]^{E}$
- Dynamics unaffected by transformation $w \mapsto c w$ for some $c \in \mathbb{R}$
- In particular, can use \hat{w} instead of w
- The path any ant takes back from F to N is simple (no loops)
- Only 1 edge connected to N is reinforced by each ant

Some observations

- $\hat{w} \in[0,1]^{E}$
- Dynamics unaffected by transformation $w \mapsto c w$ for some $c \in \mathbb{R}$
- In particular, can use \hat{w} instead of w
- The path any ant takes back from F to N is simple (no loops)
- Only 1 edge connected to N is reinforced by each ant (same goes for F)

Some observations

- $\hat{w} \in[0,1]^{E}$
- Dynamics unaffected by transformation $w \mapsto c w$ for some $c \in \mathbb{R}$
- In particular, can use \hat{w} instead of w
- The path any ant takes back from F to N is simple (no loops)
- Only 1 edge connected to N is reinforced by each ant (same goes for F)

Lemma 1

$\pi_{N}(\hat{w}):=\sum_{x \in V: x \sim N} \hat{w}_{N x}^{(n)} \rightarrow 1$

Some observations

- $\hat{w} \in[0,1]^{E}$
- Dynamics unaffected by transformation $w \mapsto c w$ for some $c \in \mathbb{R}$
- In particular, can use \hat{w} instead of w
- The path any ant takes back from F to N is simple (no loops)
- Only 1 edge connected to N is reinforced by each ant (same goes for F)

Lemma 1

$\pi_{N}(\hat{w}):=\sum_{x \in V: x \sim N} \hat{w}_{N x}^{(n)} \rightarrow 1$

Proof.

$$
\pi_{N}\left(\hat{w}^{(n)}\right)=\frac{\sum_{x \in V: x \sim N} w_{N x}^{(n)}}{n+1}
$$

Theorem

Theorem 2
$\hat{w}_{e}^{(n)} \rightarrow 1$ and all the other weights tend to 0

The Edge Reinforcements are Polyá Urns

What is a Polya Urn?

What is a Polya Urn?

Standard Urn Model:

What is a Polya Urn?

Standard Urn Model:

Let $w^{(n)}=\#$ white balls at time n.

What is a Polya Urn?

Standard Urn Model:

Let $w^{(n)}=\#$ white balls at time $n .\left(w^{(n)}\right)_{n \geq 0}$ is an Urn process when

$$
\mathbb{P}\left(w^{(n+1)}=w^{(n)}+1 \mid w^{(0)}, \ldots, w^{(n)}\right)=\frac{\# \text { white balls at time } n}{n+1}=\hat{w}^{(n)}
$$

What is a Polya Urn?

Standard Urn Model:

Let $w^{(n)}=\#$ white balls at time $n .\left(w^{(n)}\right)_{n \geq 0}$ is a p-Urn process when

$$
\mathbb{P}\left(w^{(n+1)}=w^{(n)}+1 \mid w^{(0)}, \ldots, w^{(n)}\right)=p\left(\hat{w}^{(n)}\right), p:(0,1) \mapsto(0,1)
$$

Why do we Care?

Why do we Care?

We have the following result on p-urn processes:

Why do we Care?

We have the following result on p-urn processes:

Lemma 3

If $p(\hat{w})>\hat{w}$ for every $\hat{w} \in(0, c)$ for some $c \in(0,1)$, then $\liminf _{n \rightarrow \infty} \hat{w}^{(n)} \geq c$

Calculating Reinforcement Probabilities

Some Notation

Some Notation

We want to calculate
$p(\hat{w}):=\mathbb{P}\left(w_{e}^{(n+1)}=w_{e}^{(n)}+1 \mid \hat{w}^{(n)}=\hat{w}\right)$

Some Notation

We want to calculate
$p(\hat{w}):=\mathbb{P}\left(w_{e}^{(n+1)}=w_{e}^{(n)}+1 \mid \hat{w}^{(n)}=\hat{w}\right)$ (probability we reinforce e given weights \hat{w})

Some Notation

We want to calculate
$p(\hat{w}):=\mathbb{P}\left(w_{e}^{(n+1)}=w_{e}^{(n)}+1 \mid \hat{w}^{(n)}=\hat{w}\right)$ (probability we reinforce e given weights \hat{w})

- Let S be the set of neighbours of N excluding F

Some Notation

We want to calculate
$p(\hat{w}):=\mathbb{P}\left(w_{e}^{(n+1)}=w_{e}^{(n)}+1 \mid \hat{w}^{(n)}=\hat{w}\right)$ (probability we reinforce e given weights \hat{w})

- Let S be the set of neighbours of N excluding F
- For $x \in S$, define:

Some Notation

We want to calculate
$p(\hat{w}):=\mathbb{P}\left(w_{e}^{(n+1)}=w_{e}^{(n)}+1 \mid \hat{w}^{(n)}=\hat{w}\right)$ (probability we reinforce e given weights \hat{w})

- Let S be the set of neighbours of N excluding F
- For $x \in S$, define:
- $p_{x}(\hat{w})$ as $p(\hat{w})$ conditioned on first going to x

Some Notation

We want to calculate
$p(\hat{w}):=\mathbb{P}\left(w_{e}^{(n+1)}=w_{e}^{(n)}+1 \mid \hat{w}^{(n)}=\hat{w}\right)$ (probability we reinforce e given weights \hat{w})

- Let S be the set of neighbours of N excluding F
- For $x \in S$, define:
- $p_{x}(\hat{w})$ as $p(\hat{w})$ conditioned on first going to x
- τ_{A}^{x} as the time it takes to hit set A starting from x

Some Notation

We want to calculate
$p(\hat{w}):=\mathbb{P}\left(w_{e}^{(n+1)}=w_{e}^{(n)}+1 \mid \hat{w}^{(n)}=\hat{w}\right)$ (probability we reinforce e given weights \hat{w})

- Let S be the set of neighbours of N excluding F
- For $x \in S$, define:
- $p_{x}(\hat{w})$ as $p(\hat{w})$ conditioned on first going to x
- τ_{A}^{X} as the time it takes to hit set A starting from x

Lemma 4
$p_{x}(\hat{w})=\mathbb{P}\left(\tau_{N}^{x}<\tau_{F}^{x} \mid \hat{w}\right) p(\hat{w})$

A key result

Lemma 4: $p_{x}(\hat{w})=\mathbb{P}\left(\tau_{N}^{X}<\tau_{F}^{X} \mid \hat{w}\right) p(\hat{w})$

A key result

Lemma 4: $p_{x}(\hat{w})=\mathbb{P}\left(\tau_{N}^{x}<\tau_{F}^{x} \mid \hat{w}\right) p(\hat{w})$
Conditioning on first step of random walk:

A key result

Lemma 4: $p_{x}(\hat{w})=\mathbb{P}\left(\tau_{N}^{\chi}<\tau_{F}^{\chi} \mid \hat{w}\right) p(\hat{w})$
Conditioning on first step of random walk:

$$
p(\hat{w})=\frac{\hat{w}_{e}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x}}+\sum_{x \in S} \frac{\hat{w}_{N x}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x}} p_{x}(\hat{w})
$$

A key result

Lemma 4: $p_{x}(\hat{w})=\mathbb{P}\left(\tau_{N}^{\chi}<\tau_{\digamma}^{\chi} \mid \hat{w}\right) p(\hat{w})$
Conditioning on first step of random walk:

$$
\begin{aligned}
p(\hat{w}) & =\frac{\hat{w}_{e}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x}}+\sum_{x \in S} \frac{\hat{w}_{N x}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x}} p_{x}(\hat{w}) \\
& =\frac{\hat{w}_{e}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x}}+\sum_{x \in S} \frac{\hat{w}_{N x}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x}} \mathbb{P}\left(\tau_{N}^{x}<\tau_{F}^{x} \mid \hat{w}\right) p(\hat{w})
\end{aligned}
$$

A key result

Lemma 4: $p_{\chi}(\hat{w})=\mathbb{P}\left(\tau_{N}^{\chi}<\tau_{F}^{x} \mid \hat{w}\right) p(\hat{w})$
Conditioning on first step of random walk:

$$
\begin{aligned}
p(\hat{w}) & =\frac{\hat{w}_{e}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x}}+\sum_{x \in S} \frac{\hat{w}_{N_{x}}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x}} p_{x}(\hat{w}) \\
& =\frac{\hat{w}_{e}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N_{x}}}+\sum_{x \in S} \frac{\hat{w}_{N_{x}}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N_{x}}} \mathbb{P}\left(\tau_{N}^{x}<\tau_{F}^{x} \mid \hat{w}\right) p(\hat{w}) \\
& \Rightarrow\left(\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N_{x}}\right) p(\hat{w})=\hat{w}_{e}+p(\hat{w}) \sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{N}^{x}<\tau_{F}^{x} \mid \hat{w}\right)
\end{aligned}
$$

A key result

Lemma 4: $p_{x}(\hat{w})=\mathbb{P}\left(\tau_{N}^{\chi}<\tau_{F}^{x} \mid \hat{w}\right) p(\hat{w})$
Conditioning on first step of random walk:

$$
\begin{aligned}
p(\hat{w}) & =\frac{\hat{w}_{e}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N_{x}}}+\sum_{x \in S} \frac{\hat{w}_{N_{x}}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x}} p_{x}(\hat{w}) \\
& =\frac{\hat{w}_{e}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x}}+\sum_{x \in S} \frac{\hat{w}_{N x}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x}} \mathbb{P}\left(\tau_{N}^{x}<\tau_{F}^{x} \mid \hat{w}\right) p(\hat{w}) \\
& \Rightarrow\left(\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N_{x}}\right) p(\hat{w})=\hat{w}_{e}+p(\hat{w}) \sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{N}^{x}<\tau_{F}^{x} \mid \hat{w}\right) \\
& \Rightarrow p(\hat{w})=\frac{\hat{w}_{e}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{F}^{x}<\tau_{N}^{x} \mid \hat{w}\right)}
\end{aligned}
$$

A key result

Lemma 4: $p_{x}(\hat{w})=\mathbb{P}\left(\tau_{N}^{\chi}<\tau_{F}^{x} \mid \hat{w}\right) p(\hat{w})$
Conditioning on first step of random walk:

$$
\begin{aligned}
p(\hat{w}) & =\frac{\hat{w}_{e}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x}}+\sum_{x \in S} \frac{\hat{w}_{N x}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x}} p_{x}(\hat{w}) \\
& =\frac{\hat{w}_{e}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x}}+\sum_{x \in S} \frac{\hat{w}_{N x}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x}} \mathbb{P}\left(\tau_{N}^{x}<\tau_{F}^{x} \mid \hat{w}\right) p(\hat{w}) \\
& \Rightarrow\left(\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x}\right) p(\hat{w})=\hat{w}_{e}+p(\hat{w}) \sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{N}^{x}<\tau_{F}^{x} \mid \hat{w}\right) \\
& \Rightarrow p(\hat{w})=\frac{\hat{w}_{e}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{F}^{x}<\tau_{N}^{x} \mid \hat{w}\right)}=p\left(\hat{w}_{e} \mid \hat{w}_{-e}\right)
\end{aligned}
$$

Proof of Result

Recap

Recap

- We want to show $\hat{w}_{e} \rightarrow 1$ and all other weights tend to 0

Recap

- We want to show $\hat{w}_{e} \rightarrow 1$ and all other weights tend to 0

$$
p(\hat{w})=\frac{\hat{w}_{e}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{F}^{x}<\tau_{N}^{x} \mid \hat{w}\right)}
$$

Recap

- We want to show $\hat{w}_{e} \rightarrow 1$ and all other weights tend to 0

$$
\begin{equation*}
p(\hat{w})=\frac{\hat{w}_{e}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{F}^{x}<\tau_{N}^{x} \mid \hat{w}\right)}\left(=p\left(\hat{w}_{e}\right)\right) \tag{1}
\end{equation*}
$$

Recap

- We want to show $\hat{w}_{e} \rightarrow 1$ and all other weights tend to 0

$$
\begin{equation*}
p(\hat{w})=\frac{\hat{w}_{e}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{F}^{x}<\tau_{N}^{x} \mid \hat{w}\right)}\left(=p\left(\hat{w}_{e}\right)\right) \tag{1}
\end{equation*}
$$

- If $p\left(\hat{w}_{e}\right)>\hat{w}_{e}$ for $\hat{w}_{e} \in(0, c)$ then $\liminf \hat{w}_{e} \geq c$

Recap

- We want to show $\hat{w}_{e} \rightarrow 1$ and all other weights tend to 0

$$
\begin{equation*}
p(\hat{w})=\frac{\hat{w}_{e}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{F}^{x}<\tau_{N}^{x} \mid \hat{w}\right)}\left(=p\left(\hat{w}_{e}\right)\right) \tag{1}
\end{equation*}
$$

- If $p\left(\hat{w}_{e}\right)>\hat{w}_{e}$ for $\hat{w}_{e} \in(0, c)$ then $\lim \inf \hat{w}_{e} \geq c$
- $\Leftrightarrow \hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{F}^{x}<\tau_{N}^{x} \mid \hat{w}\right)<1$

Recap

- We want to show $\hat{w}_{e} \rightarrow 1$ and all other weights tend to 0

$$
\begin{equation*}
p(\hat{w})=\frac{\hat{w}_{e}}{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{F}^{x}<\tau_{N}^{x} \mid \hat{w}\right)}\left(=p\left(\hat{w}_{e}\right)\right) \tag{1}
\end{equation*}
$$

- If $p\left(\hat{w}_{e}\right)>\hat{w}_{e}$ for $\hat{w}_{e} \in(0, c)$ then liminf $\hat{w}_{e} \geq c$
- $\Leftrightarrow \hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{F}^{x}<\tau_{N}^{x} \mid \hat{w}\right)<1$
- Recall Lemma 1: $\pi_{N}(\hat{w}):=\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x} \rightarrow 1$

Proof

Proof

- Pick a $c \in(0,1)$ and assume $\hat{w}_{e} \in(0, c)$.

Proof

- Pick a $c \in(0,1)$ and assume $\hat{w}_{e} \in(0, c)$. Then $\exists x \in S: \hat{w}_{N x}>0$ (Lemma 1).

Proof

- Pick a $c \in(0,1)$ and assume $\hat{w}_{e} \in(0, c)$. Then $\exists x \in S: \hat{w}_{N_{x}}>0$ (Lemma 1). Call it y

Proof

- Pick a $c \in(0,1)$ and assume $\hat{w}_{e} \in(0, c)$. Then $\exists x \in S: \hat{w}_{N x}>0$ (Lemma 1). Call it y
- Since $\hat{w}_{N y}>0$,

$$
\mathbb{P}\left(\tau_{F}^{y}<\tau_{N}^{y} \mid \hat{w}\right) \leq 1-\hat{w}_{N y} /|V|
$$

Proof

- Pick a $c \in(0,1)$ and assume $\hat{w}_{e} \in(0, c)$. Then $\exists x \in S: \hat{w}_{N_{x}}>0$ (Lemma 1). Call it y
- Since $\hat{w}_{N y}>0$,

$$
\mathbb{P}\left(\tau_{F}^{y}<\tau_{N}^{y} \mid \hat{w}\right) \leq 1-\hat{w}_{N y} /|V|
$$

- Then

$$
\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{F}^{x}<\tau_{N}^{\chi} \mid \hat{w}\right) \leq \hat{w}_{e}+\sum_{x \in S \backslash\{y\}} \hat{w}_{N x}+\hat{w}_{N_{y}}\left(1-\hat{w}_{N y} /|V|\right)
$$

Proof

- Pick a $c \in(0,1)$ and assume $\hat{w}_{e} \in(0, c)$. Then $\exists x \in S: \hat{w}_{N x}>0$ (Lemma 1). Call it y
- Since $\hat{w}_{N y}>0$,

$$
\mathbb{P}\left(\tau_{F}^{y}<\tau_{N}^{y} \mid \hat{w}\right) \leq 1-\hat{w}_{N y} /|V|
$$

- Then

$$
\begin{aligned}
\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{F}^{x}<\tau_{N}^{x} \mid \hat{w}\right) & \leq \hat{w}_{e}+\sum_{x \in S \backslash\{y\}} \hat{w}_{N x}+\hat{w}_{N y}\left(1-\hat{w}_{N y} /|V|\right) \\
& =\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x}-\hat{w}_{N y}^{2} /|V|
\end{aligned}
$$

Proof

- Pick a $c \in(0,1)$ and assume $\hat{w}_{e} \in(0, c)$. Then $\exists x \in S: \hat{w}_{N_{x}}>0$ (Lemma 1). Call it y
- Since $\hat{w}_{N y}>0$,

$$
\mathbb{P}\left(\tau_{F}^{y}<\tau_{N}^{y} \mid \hat{w}\right) \leq 1-\hat{w}_{N y} /|V|
$$

- Then

$$
\begin{aligned}
\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{F}^{x}<\tau_{N}^{x} \mid \hat{w}\right) & \leq \hat{w}_{e}+\sum_{x \in S \backslash\{y\}} \hat{w}_{N x}+\hat{w}_{N y}\left(1-\hat{w}_{N y} /|V|\right) \\
& =\underbrace{\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x}}_{\pi_{N}(\hat{w}) \rightarrow 1 \text { (Lemma 1) }}-\hat{w}_{N y}^{2} /|V|
\end{aligned}
$$

Proof

- Pick a $c \in(0,1)$ and assume $\hat{w}_{e} \in(0, c)$. Then $\exists x \in S: \hat{w}_{N_{x}}>0$ (Lemma 1). Call it y
- Since $\hat{w}_{N y}>0$,

$$
\mathbb{P}\left(\tau_{F}^{y}<\tau_{N}^{y} \mid \hat{w}\right) \leq 1-\hat{w}_{N y} /|V|
$$

- Then

$$
\begin{aligned}
\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{F}^{x}<\tau_{N}^{x} \mid \hat{w}\right) & \leq \hat{w}_{e}+\sum_{x \in S \backslash\{y\}} \hat{w}_{N x}+\hat{w}_{N y}\left(1-\hat{w}_{N y} /|V|\right) \\
& =1-\underbrace{\hat{w}_{N y}^{2} /|V|}_{>0}
\end{aligned}
$$

Proof

- Pick a $c \in(0,1)$ and assume $\hat{w}_{e} \in(0, c)$. Then $\exists x \in S: \hat{w}_{N_{x}}>0$ (Lemma 1). Call it y
- Since $\hat{w}_{N y}>0$,

$$
\mathbb{P}\left(\tau_{F}^{y}<\tau_{N}^{y} \mid \hat{w}\right) \leq 1-\hat{w}_{N y} /|V|
$$

- Then

$$
\begin{aligned}
\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{F}^{x}<\tau_{N}^{x} \mid \hat{w}\right) & \leq \hat{w}_{e}+\sum_{x \in S \backslash\{y\}} \hat{w}_{N x}+\hat{w}_{N_{y}}\left(1-\hat{w}_{N_{y}} /|V|\right) \\
& =1-\underbrace{\hat{w}_{N y}^{2} /|V|}_{>0}<1
\end{aligned}
$$

Proof

- Pick a $c \in(0,1)$ and assume $\hat{w}_{e} \in(0, c)$. Then $\exists x \in S: \hat{w}_{N_{x}}>0$ (Lemma 1). Call it y
- Since $\hat{w}_{N y}>0$,

$$
\mathbb{P}\left(\tau_{F}^{y}<\tau_{N}^{y} \mid \hat{w}\right) \leq 1-\hat{w}_{N y} /|V|
$$

- Then

$$
\begin{aligned}
\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{F}^{x}<\tau_{N}^{x} \mid \hat{w}\right) & \leq \hat{w}_{e}+\sum_{x \in S \backslash\{y\}} \hat{w}_{N x}+\hat{w}_{N_{y}}\left(1-\hat{w}_{N_{y}} /|V|\right) \\
& =1-\underbrace{\hat{w}_{N y}^{2} /|V|}_{>0}<1
\end{aligned}
$$

- So $\liminf \hat{w}_{e} \geq c$

Proof

- Pick a $c \in(0,1)$ and assume $\hat{w}_{e} \in(0, c)$. Then $\exists x \in S: \hat{w}_{N x}>0$ (Lemma 1). Call it y
- Since $\hat{w}_{N y}>0$,

$$
\mathbb{P}\left(\tau_{F}^{y}<\tau_{N}^{y} \mid \hat{w}\right) \leq 1-\hat{w}_{N y} /|V|
$$

- Then

$$
\begin{aligned}
\hat{w}_{e}+\sum_{x \in S} \hat{w}_{N x} \mathbb{P}\left(\tau_{F}^{x}<\tau_{N}^{x} \mid \hat{w}\right) & \leq \hat{w}_{e}+\sum_{x \in S \backslash\{y\}} \hat{w}_{N x}+\hat{w}_{N y}\left(1-\hat{w}_{N y} /|V|\right) \\
& =1-\underbrace{\hat{w}_{N y}^{2} /|V|}_{>0}<1
\end{aligned}
$$

- So liminf $\hat{w}_{e} \geq c$
- But we assumed nothing about c!!!

Future Work

Future Work

- Edge length?

Future Work

- Edge length? (actually not that bad)

Future Work

- Edge length? (actually not that bad)
- What about when N and F not connected?

Future Work

- Edge length? (actually not that bad)
- What about when N and F not connected?
- Multiple food sources/ nests?

Future Work

- Edge length? (actually not that bad)
- What about when N and F not connected?
- Multiple food sources/ nests?
- Other reinforcement rules

Thank You

Lemma 3 Sketch Proof

Let $\mathcal{A}^{(n)}:=\left\{e\right.$ reinforced $\left.\mid \hat{w}^{(n)}\right\}$.

Lemma 3 Sketch Proof

Let $\mathcal{A}^{(n)}:=\left\{e\right.$ reinforced $\left.\mid \hat{w}^{(n)}\right\}$.

$$
\hat{w}_{e}^{(n+1)}-\hat{w}_{e}^{(n)}=\frac{w_{e}^{(n)}+\mathbb{1}_{\mathcal{A}^{(n)}}}{n+2}-\frac{w_{e}^{(n)}}{n+1}
$$

Lemma 3 Sketch Proof

Let $\mathcal{A}^{(n)}:=\left\{e\right.$ reinforced $\left.\mid \hat{w}^{(n)}\right\}$.

$$
\begin{aligned}
\hat{w}_{e}^{(n+1)}-\hat{w}_{e}^{(n)} & =\frac{w_{e}^{(n)}+\mathbb{1}_{\mathcal{A}^{(n)}}}{n+2}-\frac{w_{e}^{(n)}}{n+1} \\
& =w_{e}^{(n)}\left(\frac{1}{n+2}-\frac{1}{n+1}\right)+\frac{1}{n+2} \mathbb{1}_{\mathcal{A}^{(n)}}
\end{aligned}
$$

Lemma 3 Sketch Proof

Let $\mathcal{A}^{(n)}:=\left\{e\right.$ reinforced $\left.\mid \hat{w}^{(n)}\right\}$.

$$
\begin{aligned}
\hat{w}_{e}^{(n+1)}-\hat{w}_{e}^{(n)} & =\frac{w_{e}^{(n)}+\mathbb{1}_{\mathcal{A}^{(n)}}}{n+2}-\frac{w_{e}^{(n)}}{n+1} \\
& =w_{e}^{(n)}\left(\frac{1}{n+2}-\frac{1}{n+1}\right)+\frac{1}{n+2} \mathbb{1}_{\mathcal{A}^{(n)}} \\
& =-\frac{1}{n+2} \hat{w}_{e}^{(n)}+\frac{1}{n+2}\left(\mathbb{1}_{\mathcal{A}^{(n)}}-p\left(\hat{w}_{e}^{(n)}\right)+p\left(\hat{w}_{e}^{(n)}\right)\right)
\end{aligned}
$$

Lemma 3 Sketch Proof

Let $\mathcal{A}^{(n)}:=\left\{e\right.$ reinforced $\left.\mid \hat{w}^{(n)}\right\}$.

$$
\begin{aligned}
\hat{w}_{e}^{(n+1)}-\hat{w}_{e}^{(n)} & =\frac{w_{e}^{(n)}+\mathbb{1}_{\mathcal{A}^{(n)}}}{n+2}-\frac{w_{e}^{(n)}}{n+1} \\
& =w_{e}^{(n)}\left(\frac{1}{n+2}-\frac{1}{n+1}\right)+\frac{1}{n+2} \mathbb{1}_{\mathcal{A}^{(n)}} \\
& =-\frac{1}{n+2} \hat{w}_{e}^{(n)}+\frac{1}{n+2}\left(\mathbb{1}_{\mathcal{A}^{(n)}}-p\left(\hat{w}_{e}^{(n)}\right)+p\left(\hat{w}_{e}^{(n)}\right)\right) \\
& =\frac{1}{n+2}\left(p\left(\hat{w}_{e}^{(n)}\right)-\hat{w}_{e}^{(n)}+\mathbb{1}_{\mathcal{A}^{(n)}}-p\left(\hat{w}_{e}^{(n)}\right)\right)
\end{aligned}
$$

Lemma 3 Sketch Proof

Let $\mathcal{A}^{(n)}:=\left\{e\right.$ reinforced $\left.\mid \hat{w}^{(n)}\right\}$.

$$
\begin{aligned}
\hat{w}_{e}^{(n+1)}-\hat{w}_{e}^{(n)} & =\frac{w_{e}^{(n)}+\mathbb{1}_{\mathcal{A}^{(n)}}}{n+2}-\frac{w_{e}^{(n)}}{n+1} \\
& =w_{e}^{(n)}\left(\frac{1}{n+2}-\frac{1}{n+1}\right)+\frac{1}{n+2} \mathbb{1}_{\mathcal{A}^{(n)}} \\
& =-\frac{1}{n+2} \hat{w}_{e}^{(n)}+\frac{1}{n+2}\left(\mathbb{1}_{\mathcal{A}^{(n)}}-p\left(\hat{w}_{e}^{(n)}\right)+p\left(\hat{w}_{e}^{(n)}\right)\right) \\
& =\frac{1}{n+2}(\underbrace{p\left(\hat{w}_{e}^{(n)}\right)-\hat{w}_{e}^{(n)}}_{F\left(\hat{w}_{e}^{(n)}\right)}+\underbrace{\left.\mathbb{1}_{\mathcal{A}^{(n)}-p\left(\hat{w}_{e}^{(n)}\right)}\right)}_{\text {mean zero }}
\end{aligned}
$$

Lemma 3 Sketch Proof

Let $\mathcal{A}^{(n)}:=\left\{e\right.$ reinforced $\left.\mid \hat{w}^{(n)}\right\}$.

$$
\begin{aligned}
\hat{w}_{e}^{(n+1)}-\hat{w}_{e}^{(n)} & =\frac{w_{e}^{(n)}+\mathbb{1}_{\mathcal{A}^{(n)}}-\frac{w_{e}^{(n)}}{n+1}}{n+2} \\
& =w_{e}^{(n)}\left(\frac{1}{n+2}-\frac{1}{n+1}\right)+\frac{1}{n+2} \mathbb{1}_{\mathcal{A}^{(n)}} \\
& =-\frac{1}{n+2} \hat{w}_{e}^{(n)}+\frac{1}{n+2}\left(\mathbb{1}_{\mathcal{A}^{(n)}}-p\left(\hat{w}_{e}^{(n)}\right)+p\left(\hat{w}_{e}^{(n)}\right)\right) \\
& =\frac{1}{n+2}(\underbrace{p\left(\hat{w}_{e}^{(n)}\right)-\hat{w}_{e}^{(n)}}_{F\left(\hat{w}_{e}^{(n)}\right)}+\underbrace{\mathbb{1}_{\mathcal{A}^{(n)}}-p\left(\hat{w}_{e}^{(n)}\right)}_{\text {mean zero }})
\end{aligned}
$$

This makes $\left(\hat{w}_{e}^{(n)}\right)_{n \geq 0}$ a Stochastic Approximation Process:

Lemma 3 Sketch Proof

Let $\mathcal{A}^{(n)}:=\left\{\right.$ e reinforced $\left.\mid \hat{w}^{(n)}\right\}$.

$$
\begin{aligned}
\hat{w}_{e}^{(n+1)}-\hat{w}_{e}^{(n)} & =\frac{w_{e}^{(n)}+\mathbb{1}_{\mathcal{A}^{(n)}}-\frac{w_{e}^{(n)}}{n+1}}{n+2} \\
& =w_{e}^{(n)}\left(\frac{1}{n+2}-\frac{1}{n+1}\right)+\frac{1}{n+2} \mathbb{1}_{\mathcal{A}^{(n)}} \\
& =-\frac{1}{n+2} \hat{w}_{e}^{(n)}+\frac{1}{n+2}\left(\mathbb{1}_{\mathcal{A}^{(n)}}-p\left(\hat{w}_{e}^{(n)}\right)+p\left(\hat{w}_{e}^{(n)}\right)\right) \\
& =\frac{1}{n+2}(\underbrace{p\left(\hat{w}_{e}^{(n)}\right)-\hat{w}_{e}^{(n)}}_{F\left(\hat{w}_{e}^{(n)}\right)}+\underbrace{\mathbb{1}_{\mathcal{A}^{(n)}}-p\left(\hat{w}_{e}^{(n)}\right)}_{\text {mean zero }})
\end{aligned}
$$

This makes $\left(\hat{w}_{e}^{(n)}\right)_{n \geq 0}$ a Stochastic Approximation Process: behaves like the dynamical system $\dot{w}=F(w)$

